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1 INTRODUCTION  
The product description, requirements and satellite instrument description are briefly 
introduced in this section. Section 2 gives an overview of the land surface temperature (LST) 
retrieval algorithm and operations concept. In detail, it describes the baseline algorithm, its 
input and output data, the theoretical background, sensitivity analyses and error budget. 
Some practical considerations are also described, followed by the validation practices. 
Assumptions and limitations associated with the algorithm is discussed in Section 3. Finally, 
Section 4 lists the references cited. Though this document is based on the S-NPP VIIRS, it 
also applies to the VIIRS sensor onboard J-1, J-2 etc. Section 2.3.2 will provide details on 
how to use this enterprise algorithm in multiple sensors.  

1.1 Product Overview 

1.1.1 Product Description 

Land surface temperature (LST) is one of the most important parameters in the weather and 
climate system controlling surface heat and water exchange with the atmosphere [Yu et al., 
2012]. It has been widely used in a variety of fields such as numerical weather prediction 
models and data assimilation systems [Meng et al., 2009; Bauer et al., 2010; Zheng et al., 
2012, Trigo et al., 2015], evapotranspiration evaluation [Sun et al., 2012, Galleguillos et 
al.,2011], irrigation and hydrological cycle particularly agricultural drought monitoring 
[Anderson et al., 2011, 2012, Karnieli et al.,2010; Wan et al., 2004], and urban heat island 
monitoring [Rajasekar and Weng, 2009; Weng et al., 2004; Weng 2009; Voogt and Oke, 
2003]. In the United States of America, demands of satellite LST data are from a variety of 
government agencies including the National Oceanic and Atmospheric Administration 
(NOAA), Department of Agriculture (DOA), Environmental Protection Agency (EPA), 
Department of the Interior (DOI), Department of Defense (DOD), as well as from universities 
and research institutes.  
 
Accuracy of the satellite LST measurement is limited by the atmospheric correction, the 
complexity of surface emission characteristics, and sensor performance. Therefore the 
performance of LST algorithms depends on the retrieval conditions. It is worth mentioning  
that LST performance varies significantly over region, season, day/night, dry/moist etc. 
conditions according to published worldwide LST validation results (Yu et al., 2009b, 2012; 
Coll et al., 2005, 2010,2012; Hook et al., 2007; Hulley & Hook, 2011; Guillevic et al., 2012; 
Wan et al., 2002, 2004,2014; Li S. et al., 2014;  Li H. et al., 2014; Liu et al., 2015; Göttsche 
et al., 2016) .  
 
By now satellite LSTs have been routinely produced for over forty years from a variety of 
polar-orbiting and geostationary satellites. For producing an LST climate data record from 

http://journals.ametsoc.org/author/Karnieli%2C+Arnon
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those programs, consistency among LST products from different satellite missions are 
considered for better cross-satellite evaluation and better geographic global validation. A 
primary objective of the enterprise LST development is to provide a state-of-the-art LST 
algorithm that is applicable to multiple sensors and has good quality. The enterprise LST 
algorithm should be simplicity, robust and applicable to both geostationary orbit (GEO) and 
Low Earth orbit (LEO) satellite missions. Note that the enterprise LST products are available 
only for cloud clear, probably clear and probably cloudy pixels; and the LUT is stratified for 
the following conditions: daytime and nighttime, levels of satellite viewing zenith angles and 
levels of dry and moist atmospheres. Specifications of the LST product such as resolution, 
accuracy and refresh rate will be described in the next section.  
 
Currently, surface emissivity variation is still the biggest impediment in satellite LST retrieval. 
The remote sensing community has been working for years to obtain high quality and time 
series of global land surface emissivity(LSE) maps (e.g., Borbas et al., 2008; Seemann et 
al., 2008; Hulley & Hook, 2009; Hulley et al., 2015). The enterprise LST algorithm should 
potentially benefit from such technical improvement of emissivity estimation. Concurrent with 
the enterprise LST development, the global gridded emissivity product is also developed to 
support the emissivity explicit LST algorithms. For details about the emissivity algorithm, 
please refer to the emissivity ATBD.  

1.1.2 Product Requirements 

Product requirements were defined in the satellite missions. Table 1-1 provides the LST 
accuracy and precision requirements for the JPSS mission, which also applies to the 
requirements for this enterprise VIIRS LST algorithm.  

Table 1-1 Product requirements from JPSS L1RD  

Accuracy  1.4 K  

Precision (1 sigma) 2.5 K 

Measurement Range 213 – 343 K 

Refresh Rate At least 90% coverage of the globe every 12 hours 

Horizontal Resolution 0.8 km  

 
The enterprise LST product is in Netcdf4 format with associated quality flag and metadata 
information.  The accuracy and precision listed in table 1-1 is only for confidently clear pixels. 
The LST product has a latency requirement of 96 minutes allocated to Environmental 
Satellite Processing Center (ESPC) processing. More details about the requirements, please 
refer to the document for JPSS risk reduction project requirement.  
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1.2 Satellite Instrument Description 

Visible Infrared Radiometer Suite (VIIRS) onboard S-NPP and future JPSS series e.g. J-1, 
J-2 etc., a scanning radiometer, collects visible and infrared imagery and radiometric 
measurements of the land, atmosphere, cryosphere, and oceans. VIIRS extends and 
improves upon a series of measurements initiated by the Advanced Very High Resolution 
Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS). 
VIIRS data is used to measure land surface temperature, as well as cloud and aerosol 
properties, ocean color, sea surface temperature, ice motion and temperature, fires, and 
Earth's albedo. Climatologists use VIIRS data to improve our understanding of global climate 
change.  

Table 1-2 VIIRS bands and bandwidths 
VIIRS 
Band 

wavelength 
(µm) 

Bandwidth (µm) NEDT/SNR Dynamic Ranges 
(W m-2 sr-1 μm-1) 

Spatial 
resolution 

(m) 

M1  0.412  0.402-0.422  *352,316 *30-135,*135-615 

750m 

M2  0.445  0.436-0.454  *380,409 *26-127,*127-687 

M3  0.488  0.478-0.488  *416,414 *22-107,*107-702 

M4  0.555  0.545-0.565  *362,315 *12-78,*78-667 

M5(B)  0.672  0.662-0.682  *242,360 *8.6-59,*59-651 

M6  0.746  0.739 - 0.754  199 5.3-41.0 

M7(G)  0.865  0.846 - 0.885  *215,340 *3.4-29,*29-349 

M8  1.240   1.23 - 1.25  74 3.5-164.9 

M9  1.378  1.371 - 1.386  83 0.6-77.1 

M10(R)  1.61  1.58 - 1.64  342 1.2-71.2 

M11  2.25  2.23 - 2.28  10 0.12-31.8 

M12  3.7  3.61 - 3.79  0.396 230-353K 

M13  4.05  3.97 - 4.13  *0.107,0.423 230-634K 

M14  8.55  8.4 - 8.7  0.091 K 190-336K 

M15  10.763  10.26 - 11.26  0.070 K 190-343K 
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M16  12.013  11.54 - 12.49  0.072 K 190-340K 

DNB  0.7  0.5 - 0.9   3e-9~2E-2wcm-2sr-1 750m  

I1(B)  0.64  0.6 - 0.68  119 5-718 

375m  

I2(G)  0.865  0.85 - 0.88  150 10.3-349 

I3(R)  1.61  1.58 - 1.64  6 1.2-72.5 

I4  3.74  3.55 - 3.93  2.500 K 210-353K 

I5  11.45  10.5 - 12.4  1.500 K 190-340K 

 
Note: *dual gain band, spectral radiance in unit of wm-2sr-1 µm-1. Shaded channels are used 
for LST retrievals. 
 
VIIRS provides global moderate-resolution data twice daily without any gap. It is a scanning 
radiometer with a total field of regard of 112.56° in the cross-track direction. At a nominal 
equatorial altitude of 829 km, the swath width is ~3060 km, providing full global daily 
coverage in both day and night. 
 
As shown in table 1-2, VIIRS has 22 spectral bands covering wavelengths from 0.4 to 12.5 
μm, providing data for the production of more than 20 Environmental Data Records (EDRs). 
Among the 22 bands, there are 16 moderate-resolution bands (M bands, each with 16 
detectors) with a spatial resolution of 750 m at nadir, five imaging resolution bands (I bands, 
each with 32 detectors) with a 375 m spatial resolution at nadir, and one panchromatic DNB 
with a near constant 750 m spatial resolution throughout the scan. The M bands include 11 
reflective solar bands (RSB) and 5 thermal emissive bands (TEB) which includes the two 
split window channels used for the LST retrieval. The I bands include 3 RSB and 2 TEB (Cao 
et al., 2013).  
 
To save transmission bandwidth, VIIRS uses a “bow-tie” deletion to remove duplicated pixels 
in the off nadir regions where pixels overlap between adjacent scans [Cao et al., 2013]. The 
advanced design of VIIRS will provide users with finer spatial resolution both at nadir and 
scan edges.  
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Figure 1-1 Spectral distribution of the VIIRS channels. 
 
The land surface temperature will be produced for each non-confidently-cloudy land pixel 
observed by the VIIRS sensor. The LST retrieval will rely on data from VIIRS channels M15 
and M16 using split window technique. 
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2 ALGORITHM DESCRIPTION 

 
A generic high level flowchart of the enterprise LST algorithm is given in the Figure 2-1. 

 

Figure 2-1 High level data flow of the enterprise LST algorithm. 
 
The enterprise LST product is based on a split-window technique that corrects for 
atmospheric absorption, and applies surface emissivity explicitly in the retrieval.  Coefficients 
of the LST algorithm, which were derived using an atmospheric radiative transfer model 
(RTM), are stratified by daytime and nighttime conditions, multiple levels of viewing geometry 
and dry and moist atmospheric conditions. The algorithm is then verified using a RTM 
simulation dataset and evaluated using S-NPP VIIRS dataset and ground measurements. 
 

2.1 Processing Outline 

The processing outline of the LST is summarized in Figure 2-2. It starts from initialization 
module in which all input and output data are initialized.  The pixel level processing checks 
the non-retrieval conditions as a priority: sea water, bad SDR data, cloudy condition, missing 
input, BT out of range and emissivity out of range. Any pixel with missing input that includes 
spectral emissivity, total precipitable water, sensor zenith angle, solar zenith angle, cloud 
mask and land/sea mask will be skipped for LST retrieval. The valid BT range is set as 
[190,343] and [190,340] for VIIRS band 15 and band 16, respectively based on the SDR 
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ATBD. The emissivity valid range is set to be [0.8, 1.0] consistent to the settings in the 
emissivity product. Cloudy condition means that the cloud mask indicates the pixel as 
confidently cloudy. If any one of the non-retrieval conditions is met, the LST will be set as a 
fill value and the corresponding quality flag will be set accordingly. Note that the gridded 
emissivity product has been developed for this purpose. The nearest neighbor method is 
used for mapping the gridded emissivity data into granule pixels. 
 
Following that a valid retrieval will be performed. Before calculating LST for each non-
confident-cloudy land pixel, day/night time flag is determined from the solar zenith angle (≤ 
or > 85º) of the sensor geometric data; and dry/moist atmospheric condition flag is 
determined using the NCEP water vapor information. LST of the pixel is calculated 
accordingly with the corresponding algorithm coefficients set. Note that LST will be calculated 
for in-land snow/ice pixels as well and this is indicated in the quality control flags. Large view 
angle will be flagged also. Finally, the calculated LST values and their associated quality 
control flags, which were generated in each of the above steps, are combined with the LST 
product package and are written to files for user access.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2 High Level Flowchart of the LST production for illustrating the main processing steps. 
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2.2 Algorithm Input  

This section describes the input needed to process the LST product. While the LST is derived 
for each pixel, ancillary datasets are required as well as the upstream data. Note that some 
input e.g. cloud mask and AOD for the enterprise LST derivation is from enterprise products. 

2.2.1 Primary Sensor Data 
The list below contains the primary sensor data used for the LST retrieval. By primary sensor 
data, we mean information that is derived solely from the sensor observations and 
geolocation information, or the level 1b data. Table 2-1 lists those input sensor data and their 
descriptions.  

Table 2-1Input list of primary sensor data. 
Name  Description  Dimension  Unit  
Brightness temperature at 11µm brightness temperature at 11µm  grid (xsize, ysize)  K  
Brightness temperature at 12µm  brightness temperature at 12µm  grid (xsize, ysize)  K 
Latitude  Pixel latitude  grid (xsize, ysize)  Degree  
Longitude  Pixel longitude  grid (xsize, ysize)  Degree  
Solar zenith  solar zenith angles  grid (xsize, ysize)  Degree  
View Zenith  Satellite view zenith angle  grid (xsize, ysize)  Degree  
SDR QC flags  Level 1b data quality  grid (xsize, ysize)  unitless  
 
SDR channel input: 
 
SDR channel brightness temperatures at 11µm (band M15) and 12µm (band M16) are used 
for LST calculation directly.  
 
Geolocation data: 
Latitude and longitude information for each pixel is needed to map ancillary data to the sensor 
pixels.  
 
Viewing geometry information: 
Solar zenith angle is needed to determine day and night condition. The satellite view zenith 
angle is used for atmospheric path correction, which is stratified in the algorithm coefficient. 
Details of their usage for LST derivation will be described in later sections. 
 
Quality flags in the level 1 data: 
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Any inherent QC flags in the level 1 SDR data will be read and applied before generating 
LST using the selected algorithm. Any missing/bad pixels will be skipped. 
 

2.2.2 Derived Sensor Data 
 

The derived sensor data sets used for the LST retrieval are listed in Table 2-2 and 
described in this section.  

Table 2-2 Input list of derived sensor data. 
Name  Description  Dimension  Unit  
Cloud mask  Enterprise cloud mask (ECM) data  grid (xsize, ysize)  unitless  
Snow mask  Snow mask from snow cover EDR grid (xsize, ysize)  unitless 
Land/sea mask  NASA land/sea mask data  grid (xsize, ysize)  unitless 
water vapor NCEP tpw data  grid (xsize, ysize) mm(cm)  
Emissivity  Land surface emissivity  grid (xsize, ysize) unitless  
AOD Enterprise AOD data  grid (xsize, ysize) unitless  
 
Cloud mask: 
The ECM product has been used as input, which provides 4-level cloud scheme indicating 
four cloudiness conditions for each pixel: clear, probably clear, probably cloudy, and cloudy. 
It also provides the information for thin cirrus and active fire. 
 
Total precipitable water: 
NCEP forecast data is used as the source for TPW input. Its coarse spatial resolution and 
quality has been a concern for LST performance. Sensitivity test is conducted and introduced 
in the section of sensitivity analysis. If TPW data is available from the sensor of the same 
satellite platform, it shall be used as the input. 
 
Surface emissivity: 
A set of spectral (i.e., the split-window channels) LSE data is required for this emissivity 
explicit enterprise LST algorithm An LSE algorithm development is on-going, which provides 
a global daily LSE product for the LST derivation. This product has a special resolution of 
0.009 degree and will be mapped to the resolution of this LST product.  
 
Snow mask: 



NOAA/NESDIS/OSPO  
   Algorithm Theoretical Basis Document 

Version 1.2 
Date 10/28/2020 

TITLE:  Enterprise LST Algorithm Theoretical Basis Document 
  Page 18 of 69 

 
 

 

The enterprise snow cover EDR is used which provides a binary snow mask at I-band spatial 
resolution of 375 m therefore the data preprocessing is performed for snow mask input by 
mapping the data from 375 m to 750 m.  
 
Land/sea mask: 
The NASA land/sea mask will be used.  Several categories are available in the land/sea 
mask, including shallow, moderate and deep oceans, land, shoreline, shallow, ephemeral, 
and deep inland water.  LST will be calculated for all land and inland water pixels. 
 
AOD (aerosol optical depth): 
The enterprise AOD will be used in the determination of AOD related quality flags. Note that 
the AOD is not retrieved at nighttime when the solar zenith angle is greater than 90 degree 
[Laszlo and Liu, 2016]. If the solar zenith angle of all pixels in a granule are over 90 degree, 
there will be no AOD file input. In this case, the AOD flag is set as default value “1”. Meanwhile 
a global metadata will indicate that there is no AOD input for the granule. Therefore the quality 
bit of AOD equal to 1 has two meanings: it means AOD out of range when there is valid AOD 
retrieval, otherwise it should be interpreted as fill value.  

2.2.3 Algorithm Coefficients and Control values  
In addition to the primary and derived sensor data, algorithm coefficients and the threshold 
values for selection of the coefficient dimension and for quality control flags are ingested as 
the input. Table 2-3 lists the file information for the coefficients LUT and its dimension 
criterion. QC flag criteria and details of the algorithm selection will be given in the following 
section. 

Table 2-3 Input list of coefficient and configuration files 
Name  Description  Dimension  Unit  
Coefficients 

  
Algorithm coefficient file  2*3*5*7  Unitless  

Parameter 
  

Configuration value file  
 

Unitless  
 
The dimension of the coefficient LUT is defined as: 2 represents day/night separation; 3 
represents the dry/moist separation which is currently set as three levels: very dry condition 
(tpw in the range of 0-1.5 cm), dry condition (tpw in the range of 1.5-3.0 cm)  and moist 
condition(tpw greater than 3.0 cm); 5 represents the viewing angle separation which is 
currently set as 5 levels i.e. 0-25 degree, 25-45 degree, 45-55 degree, 55-65 degree and 65-
75 degree; 7 represents the coefficient items of the LST formula. Note that the coefficient 
LUT structure is flexible. The number of levels and values in each range can be adjusted.  
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2.3 Theoretical Description 

2.3.1 Physical Description 

Under clear sky condition, the at-sensor measured radiance within the TIR spectral range 
(8-14µm) can be described by 

↓↑ ++= )()()()( λλλλ atmatms IIII      (3.1) 

where )(λsI , 
↑)(λatmI and 

↓)(λatmI represent the radiance contributions from surface emission, 
atmospheric upwelling and reflected downwelling sky irradiance, respectively; λ is the 
wavelength of the sensing channel. The radiance components and their relationship are 
illustrated in figure 2-3.  

 

Figure 2-3 Radiation components reached to satellite sensor. 
 
Satellite LST retrievals are usually performed in infrared (IR) bands where the surface 
emission reaches its maximum, yet atmospheric absorption is significantly small. In TIR 
bands, each of the components in Eq. (3.1) can be expressed mathematically by, 
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where ε is the surface emissivity, ԏ is the atmospheric transmittance (ԏ0 is the atmospheric 
transmittance from surface), Z is the height from surface, Ts is the surface temperature, Tp 
(z) is the atmospheric temperature at height z and ),( sTB λ is the spectral radiance (

Earth 
 

Atmospher
 

Sun Satellite 

↑)(λatmI

↓)(λatmI )(λsI

)( λε

),( zλτ



NOAA/NESDIS/OSPO  
   Algorithm Theoretical Basis Document 

Version 1.2 
Date 10/28/2020 

TITLE:  Enterprise LST Algorithm Theoretical Basis Document 
  Page 20 of 69 

 
 

 

-11-2 srmW ⋅⋅⋅ −mµ ) emitted by a blackbody at temperature Ts and wavelength λ(µm), which 
can be calculated using Planck function.  

1)-)(exp(
 )(

25

1

T
c

cTB s

λ
λ

λ =       (3.3) 

where c1 and c2 are constants -2-148
1 msr W10 191.1  ⋅⋅⋅⋅= mc µ  

K m 10 1.439   4
2 ⋅⋅= µc  

 
Eq. (3.1) and (3.2) are the so-called radiative transfer equations. All these magnitudes 
depend on the observation angle. From Equation (3.2), the earth surface emitted radiance 

)(λsI is a function of temperature and emissivity and gets attenuated along the atmospheric 
path to the sensor. The purpose of the LST algorithm is to retrieve the land surface 

temperature Ts from the satellite sensor measured radiance )(λsI . In this problem, the 
surface temperature is physically coupled with two other factors:  the surface emissivity and 
the atmospheric absorptions. Developing an LST algorithm means to find a solution of 
decoupling the emissivity and the atmospheric absorption effects from the satellite received 
radiance.  
 

2.3.2 Mathematical Description 

An analytic solution to equation (3.1) is not practical, because the integration of the terms 
requires good knowledge of the atmospheric profiles which is usually not available in real 
time processing. It is worth noting that all variables in Eqs. (3.1 & 3.2) are channel effective 
values except for the angles. If the radiance is measured in N channels, there will be always 
N+1 unknowns, i.e. N emissivities in each channel and an unknown LST for N equations, 
even multiple channels of information are available.  To solve this ill-posed problem, many 
approaches have been proposed (e.g., McMillin, 1975, Walton et al., 1998; Gillespie et al., 
1996; Hook et al., 1993; Dash et al.,2002). 
 
2.3.2.1 Candidate algorithms 
 
Over the past several decades, many algorithms have been proposed to treat the 
characteristics of various sensors onboard different satellites with different assumptions and 
approximations for the radiative transfer equation and LSEs. These algorithms can be 
roughly grouped into three categories: single-channel methods, multi-channel methods, and 
multi-angle methods, provided that the LSEs are known a priori. If the LSEs are not known, 
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then the algorithms can be categorized into three types: stepwise retrieval method, 
simultaneous retrieval of LSEs and LST with known atmospheric information, and 
simultaneous retrieval (Li et al., 2013). The most widely used approach is the split window 
(SW) technique, in which the atmospheric effects are compensated using two or more 
adjacent TIR channels (typically at 10-12.5µm). The SW approach was first proposed by 
McMillin (1975) and has been successfully applied to retrieve sea surface temperature (SST). 
This method is simplistic and computationally efficient and does not require accurate 
atmospheric profiles. Encouraged by the success of the SW method for SST retrieval from 
the satellite measurements, many SW approaches have been proposed for LST retrieval 
(Atitar & Sobrino, 2009; Becker & Li, 1990; Prata 1994; Price, 1984; Tang et al., 2008; Wan 
& Dozier, 1996, Sun et al., 2004) and widely used for producing the operational LST products 
(e.g., Prata, 1993 and 1994; Wan, 1999; Caselles et al., 1997; Yu et al., 2009; Sun et al., 
2004; Hulley et al., 2012; Baker, 2013; Trigo et al., 2009). However, its application to LST 
retrieval is challenging due to the following reasons: first, compared to water surface, thermal 
IR (TIR) emissivity of most land surface types varies considerably from unity, leading to 
significant errors in the linearization of the radiative transfer equation which forms the basis 
for the SW technique (McMillin and Crosby, 1984; Yu and Barton, 1994); second, 
topographical and vegetation structural variability is complicated and satellite sensed 
brightness temperatures over a given target can differ significantly from pixel to pixel; 
moreover, spatial heterogeneity is more significant over land than over ocean, and a retrieved 
LST represents a complex integration of the observed signal within a pixel; finally, the spatial 
and temporal variation of atmosphere over land is almost always greater than that over 
oceans.   
 
The VIIRS LST product for S-NPP satellite currently uses the surface type dependent SW 
approach, where coefficients are stratified according to the surface type and day/night 
conditions. Emissivity is not explicitly required in the algorithm. The enterprise LST algorithm 
will use emissivity explicitly as the input with the term of (T11-T12)2 being exclude because: 
 

1) The S-NPP LST algorithm performance presents a strong dependency on the 
accuracy of the surface type input. 

2) The emissivity variability cannot be well characterized by the surface type particularly 
those with considerate seasonal or annual change. In addition, the surface type is in 
general mixed and heterogeneous at the moderate pixel footprint (e.g. 1 km) which 
results in the mis-representation of the actual emissivities at different error levels.  

3) The (T11-T12)2 term may lead to large LST uncertainty under specific conditions, e.g., 
when significant BT difference between the two split window bands (this can be as 
high as 16K over Australia) occurs. The simulation database is not sufficient to cover 
such situations.  
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We studied various SW LST algorithms from the literature (Price, 1984; Ulivieri and 
Cannizaro, 1985; Becker and Li, 1990; Prata and Platt, 1991; Vodal, 1991; Ulivieri et al., 
1992; Sobrino et al., 1993; Sobrino et al., 1994; Wan and Dozier, 1996; Caselles et al., 1997; 
Coll et al., 1997; Yu et al., 2008), and adapted seven (Table 2-4) as candidate algorithms for 
enterprise LST production. This is based on the comprehensive study for GOES-R ABI LST 
algorithm. Yu et al. (2008) showed that, if an algorithm’s coefficients are determined for 
typical column water vapor amounts, algorithm accuracy can degrade significantly at large 
view angles unless a corrective term is applied. Therefore, in this study, five candidate 
algorithms are with explicit path length correction term, i.e. (T11-T12)(secθ-1), in the equation 
and the other two used stratified coefficients for different viewing angle ranges. Algorithm 1, 
3, 4, 5 and 6 are composed of two parts: the base split window algorithm and path length 
correction, while algorithm 2 and 7 uses implicit path correction by stratifying the retrieval 
with different satellite viewing angles.  

Table 2-4 Candidate LST retrieval Algorithms 

No Formula# Reference 

1 
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Adapted Wan & Dozier 
(1996); Becker & Li (1990). 
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Wan & Dozier (1996); 
Becker & Li (1990). 

3 )1)(sec()( 1211312112111 −−++−++= θε TTDATTATACTs  
Ulivieri & Cannizzaro 
(1985). (ABI) 
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Price(1984) 
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Coll & Valor (1997). 
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Adapted Enterprise Alg. 

7 εεε ∆+−++−++= 512114312112111 )()( ATTAATTATACTs  Enterprise algorithm 

#Note:    
T11 and T12 represent the top-of-atmosphere brightness temperatures at ~11µm and 12 µm, 
respectively; 
Ɛ=( Ɛ 11+ Ɛ 12)/2 and  ΔƐ =( Ɛ 11- Ɛ 12), where  Ɛ 11 and  Ɛ 12 are the spectral emissivity values of 
the land surface at ~11µm and 12 µm channels, respectively; 
θ is the satellite view zenith angle. 
C,  A1, A2,  A3,  A4,  A5,  A5 and D are algorithm coefficients. 
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As with most SW algorithms, the candidate algorithms explicitly use LSE values, which can 
accommodate within class variability (Yu et al., 2005). And it allows easy incorporation of the 
new and improved global emissivity products (e.g. Hulley & Hook, 2009; Hulley et al., 2015).  
2.3.2.2 Algorithm selection 
To select a suitable algorithm for the enterprise LST production, we analyzed the theoretical 
accuracy and sensitivity of the candidate SW algorithms using a comprehensive simulation 
dataset.  It is found that all candidate algorithms give similar accuracy with slight different 
uncertainty. The accuracy/precision of the candidate algorithms were evaluated using ground 
LST data from the SURFace RADiation (SURFRAD) network, Baseline Surface Radiation 
Network (BRSN) and Global Radiation Group (GMD), and using proxy data from multiple 
sensors. The algorithm 7 was selected as the enterprise algorithm because of its consistent 
good performance over multiple sensors, simplicity and robustness.  
 
The MODTRAN atmospheric radiative transfer model (Berk et al., 2000) has been widely 
used in satellite remote sensing studies for over three decades. We used the MODTRAN 5.2 
in this study, which uses an improved molecular band model, termed the Spectrally 
Enhanced Resolution MODTRAN (SERTRAN). It has a much finer spectroscopy (0.1 cm-1) 
than its predecessors (1 cm-1), resulting in more accurate modeling of band absorption 
features in the longwave TIR window regions (Berk et al. 2005). The radiative transfer 
simulation procedure is illustrated in Figure 2-4. 
 
 

 
 

Alg 2  and 7 are carried out in different satellite view zenith angle ranges,  i.e., [0, 25, 45, 55, 
65, 75] 
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Figure 2-4 Radiative transfer simulation procedure. 
 
The atmospheric profile database consists of 126 profiles generated from cloud-free 
radiosonde data available from the CrIS F98-Weather Products Test Bed Data Package 
(NOAA88, Rev. 1.0) and 354 profiles from Thermodynamic Initial Guess Retrieval (TIGR). 
TIGR data set, in its latest version, is a climatological library of 2311 representative 
atmospheric situations selected with statistical methods from 80,000 radiosonde reports 
(Chédin et al., 1985; Claud et al., 1991; Chevallier et al., 1998). Each situation is described, 
from the surface to the top of the atmosphere, by the values of the temperature, water vapor 
and ozone concentrations on a given pressure grid. TIGR profiles were checked by means 
of a cloud test in order to exclude impacts from cloud (Galve, 2008). The profiles represented 
a variety of atmospheric conditions, spanning a column water vapor range from 0.2 to 7.5 
g/cm2 and a surface air temperature range from 240 to 306 K (Figure 2-5) and spanned from 
60º South to 70º North in latitude. 

 
Figure 2-5 Distributions of total column water and surface air temperatures of the atmospheric profiles 

used in the simulation analyses. 
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To simulate a wide range of environmental conditions using a limited profiles set, we followed 
Yu et al. (2005) and varied the prescribed LST for each profile in a range as Ts - 10 < LST < 
Ts + 10 K, where Ts is the surface temperature of the profile, with a 1 K increment. For each 
prescribed LST, we iterated the prescribed sensor view zenith angle from 0 to 70º with 10º 
increment and emissivity from 0.90 to 0.999 with a step of 0.00125.  
2.3.2.3 Regression analysis 
Upon simulating the top-of-atmosphere radiances, we then conducted regression analyses 
for the algorithm development. The regression procedure is illustrated in Figure 2-6. 
 

 

Figure 2-6 Procedure of the algorithm regression analyses. 
 
We first determined the mean channel radiance by integrating over the sensor spectral 
response function (SRF). The channel radiances were converted into corresponding 
brightness temperatures using the Planck function. This step constructs the sensor 
brightness temperature database for regression of the LST algorithms. For another sensor 
with different SRF, e.g., VIIRS on J-1 or J-2, the above step will be repeated.  
 
Because water vapor is the most significant atmospheric absorber in the thermal bands, we 
stratified the simulation data according to the water vapor content: 1) “very dry” atmosphere, 
where the total column water vapor is less than 1.5 g/cm2, 2) “dry” atmosphere, where the 
total column water vapor is between 1.5 and 3 g/cm2, 3)“moist” atmosphere, where the water 
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vapor content is between 3 and 4.5 g/cm2 and 4)“very moist” atmosphere, where the water 
vapor content is greater than 4.5 g/cm2 . It is acknowledged that warmer atmosphere has 
larger capacity of water vapor, which degrades the LST retrieval. 
 
Due to significant differences in the discontinuity between LST and air temperature, during 
daytime and nighttime, many LST retrieval algorithms (or accompanying coefficient sets) 
were specified uniquely for daytime or nighttime use. Daytime and nighttime profiles were 
separated in the regression. In addition, to better simulate real satellite data, we added 
Gaussian-distributed random noise to both the simulated brightness temperatures and the 
surface emissivity values. The standard deviations of the sensor Noise Equivalent Delta 
Temperature (NEΔT) and the surface emissivity noise are 0.1 K and 0.015 (unitless), 
respectively.  
Before conducting regression analysis with the simulated data and candidate algorithms, we 
also considered the natural Gaussian-like distribution of land surface and surface air 
temperatures as noted in Justin et al. (NGST technical report, personal communication, 
2006).  Figure 2-7 shows the filtering results for the daytime dataset. A similar process was 
applied to the nighttime dataset. 
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Figure 2-7 Daytime simulation data distribution in terms of the land surface and surface air 
temperature differences. The original simulation data (top panels) are pretty much evenly distributed in 

range of the temperature differences. The filtered data for both the dry (left) and moist (right) 
atmospheres are shown in the bottom panel. 

 

2.4 Algorithm Output  

The algorithm output includes LST values, associated quality flags as well as the related 
emissivity values including the spectral emissivity of the two split window channels, 
broadband emissivity and associated emissivity quality flags.  To minimize the file size, the 
LST value is stored as a scaled value in 16-bit integer type. The emissivity value is stored as 
scaled value in 8-bit integer type. Scale factor and offset as well as valid range, fill value etc. 
are provide as the data attributes. The quality flags are 2-byte bitwise short integer, which 
contains quality information of LST production for each pixel. The LST values and quality 
flags data arrays are described in Table 2-5. In the meantime, upon user request, the viewing 
geometry including satellite zenith angle and azimuth angle is added into the LST output.  

Table 2-5 Algorithm output data. 
Name  Description  Data Type  Dimension  Unit  

LST values 

Retrieved land surface temperature value for 
each pixel. Scaling factor is 0.005, offset is 200, 
corresponding to Eq (3.7). Therefore the valid 
retrieval range is from 2600 to 28600 
corresponding to the range of 213K to 343K.   

Short 
grid 
(xsize, 
ysize) 

K 
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LST quality 
flags Bit-based quality control flags for each pixel  Short grid(xsize, 

ysize) unitless  

Emissivity at 
11 micron 

Retrieved land surface emissivity value at 11µm 
for each pixel.  Byte 

grid 
(xsize, 
ysize) 

unitless  

Emissivity at 
12 micron 

Retrieved land surface emissivity value at 12µm 
for each pixel  Byte 

grid 
(xsize, 
ysize) 

unitless  

Broadband 
Emissivity 

Retrieved broadband land surface emissivity 
value for each pixel  Byte 

grid 
(xsize, 
ysize) 

unitless  

LSE quality 
flags LSE quality control flags for each pixel Byte 

grid 
(xsize, 
ysize) 

unitless  

 
The 2-byte LST quality flag indicates SDR quality, atmospheric condition, emissivity source, 
surface cover, and LST quality. Its definition is provided in Tables 2-6. 
Overall LST pixel quality is represented by the quality bit field.  Pixel quality is flagged as “No 
Retrieval” and the corresponding LST will be filled: (Bad SDR) or (missing input) or 
(Land/Water Flag is “SeaWater”) or (Cloud Confidence is “Confidently Cloudy”) or (BT out of 
range) or (spectral emissivity out of valid range) or LST < 0 (determined after attempt is made 
to retrieve LST). 

Table 2-6 Product quality information flags 

bit  Flag  Source  description  

1-0 LST quality LST 00=high, 01=medium, 10=low, 11=no retrieval 

3-2 Cloud condition Cloud mask 00=confidently clear, 01=probably 
clear,10=probably cloudy,11=confidently cloudy 

4 SDR quality SDR 0=normal, 1=bad data (bad quality or missing or 
out of space) 

5 Aerosol Optical 
Thickness at 550 
nm (slant path) 

AOD 0=within range(AOD<=1.0);1=outside range (AOD 
>1 or AOD missing) 

7-6 Land surface cover land/sea mask 
snow/ice mask 

00=land;01=snow/ice;10=in land water;11=coastal 
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9-8 Water vapor 
condition 

Tpw input 00=very dry atmosphere(wv<1.5g/cm2) ; 01= dry 
[1.5,3); 10=moist atmosphere[3,4.5);  11= very 
moist[4.5+) 

10 Emissivity quality Emissivity 0=within LSE uncertainty, 1=beyond LSE 
uncertainty requirement(0.015) 

11 Degradation by 
large viewing angle 

SDR 0=no degradation, 1=large view degradation 
(VIIRS: <=40 degree) 

12 Day/night flag SDR 0=night(solar zenith angle > 85degree), 1=day 

13 Thin cirrus Cloud Mask 0= no thin cirrus, 1= thin cirrus (Only available for 
daytime) 

14 Fire contamination 
flag 

Cloud mask 0= no , 1= yes 

15 Reserved 
 

Reserved for future use 

 
Figure 2-8 illustrates how quality flags are set. The quality flag is set with sequence: it started 
from the SDR related quality flag including day/night and degradation by large view angle, 
followed by the atmospheric condition indicators including dry/moist, AOD, thin cirrus and 
active fire. The latter two are from the enterprise cloud mask. For the fire algorithm ECM uses 
the EUMETSAT current operational algorithm as described by Joro et al. The thin cirrus 
detection works only during the day time.  It is found that the snow cover EDR does not have 
snow information for nighttime, cloudy condition etc, which results that the permanent snow 
area is flagged as land in the LST quality flag. Therefore the permanent snow in emissivity 
data quality flag is used to update the surface cover in the LST quality flag (bits 6-7) for non-
ocean pixels. 
 
In addition to the pixel level LST values, and quality control flags, metadata are provided in 
the LST product describing the product in detail as shown in Table 2-7. The Table 2.8 
described the logic for LST quality bits settings. 

Table 2-7 Metadata defined for the LST product file. 

Metadata List Name  description  Criteria  descriptions  

minLST  minimum LST value within 
LST range  

LST not fill and  LST within 
range[213,343]  

maxLST  maximum LST value within 
LST range  

LST not fill and  LST within 
range[213,343]  
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meanLST  Mean LST value within LST 
range  

LST not fill and  LST within 
range[213,343]  

stddevLST  Standard deviation of LST 
within LST range  

LST not fill and  LST within 
range[213,343]  

Percentage_Pixels_inValid  Percentage of invalid pixels  LST < 213 or LST > 343 and 
LST is not fill  

Percentage_Pixels_high_quality  Percentage of high quality 
retrievals  

LST quality is high(LST is not 
fill included)  

Percentage_Pixels_medium_quality  Percentage of medium 
quality retrievals 

LST quality is medium (LST is 
not fill included)  

Percentage_Pixels_low_quality  Percentage of low quality 
retrievals 

LST quality is low(LST is not fill 
included)  

Percentage_Pixels_retrieved  Percentage of pixels with 
LST retrieval  

LST is not fill  

Percentage_Pixels_largeAngle  Percentage of pixels with 
large view angle  

pixels when stz > 40(VIIRS) 
and LST is not fill  

Percentage_Pixels_land  Percentage of land pixels  land pixels when LST is not fill  

Percentage_Pixels_clear  Percentage of pixels under 
confidently clear or 
probably clear  

pixels when LST is not fill and 
cloud is marked as confidently 
clear or probably clear  

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

T 
 Cld==‘prob cloudy’ Set cld=‘ prob cloudy‘ 

  Cld ==‘prob clear’’ Setcld=‘ prob clear‘ 
T 

F 

  Cld ==clear Set cld= ‘ clear‘ 

Set  cld= ‘cloudy’ 

T 

F 

F 

Cloud Indicator 

!out space && 
!bad pixel && 
Stz <  limit && 

Stz > missing && 
Soz > missing 

Set SDR quality=‘Normal‘ 

T 

SDR Quality Indicator 

AOD >= 0 && 
AOD <= 1 

  

‘AOD in Range’ 

AOD indicator 
T 



NOAA/NESDIS/OSPO  
   Algorithm Theoretical Basis Document 

Version 1.2 
Date 10/28/2020 

TITLE:  Enterprise LST Algorithm Theoretical Basis Document 
  Page 31 of 69 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2-8 Flow chart for quality flag settings 

Table 2-8  LST QF/Quality Bit Field Logic Table (Retrieval Cases Only) 
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Cloud Confidence Indicator 

Confident Clear 
Probably 

Clear Probably Cloudy 
T x x x yes Low Low Low 

Day night=‘Day’ 

Soz > 85 
T 

Day/night indicator 

T 
Set sf to ‘snow/ice’ 

‘sf ==in land water 

Snow status == snow 

sf==land Set sf to ‘land’ 

F 

T 
Set sf to ‘inland water’ 

Land surface cover indicator Set sf to “coastal’ 

T 

F 

F 

‘Thin Cirrus’ 

Cirrus==‘present’ 

T 

Thin Cirrus indicator 

Fire Contaminated 

Fire Mask==‘Fire 

T 

Fire indicator 

T Stz <= stz_zen_limit 

‘No Large angle degradation’ 

Angle Degradation 

T 

Set emi= within uncertainty 

  Emi! = preset limit 
T 

Emissivity uncertainty indicator 

cm == cm_conf_clear && aot == 
aot_within && stz == zsen_nodegrad 
&& thin cirrus== no_thin_cirrus && 
Fire mask=no fire 

Set lst quality as ‘High’ 

cm == cm_conf_clear | | cm == 
cm_prob_clear && aot == aot_within && 
thin cirrus== no_thin_cirrus && Fire 
mask=no fire 

Set lst quality as ‘Medium’ 

T 

F 

T 

Set lst quality as ‘Low’ 

F 

LST quality indicator 

T 
Tpw>=3  && tpw <4.5 Set tpw= moist‘ 

  Tpw>=1.5 && tpw <3 Set tpw=‘dry‘ 
T 

F 

 Tpw>=0 && tpw<=1.5 Set tpw=‘very dry‘ 

Set tpw= very moist‘ 

T 

F 

F 

TCWV indicator 
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Cloud Confidence Indicator 

Confident Clear 
Probably 

Clear Probably Cloudy 
T x x out x Low Low Low 
T x fire x x Low Low Low 
T out no in no Medium Medium Low 
T in no in no High Medium Low 

F x x x 
 
x No Retrieval 

No 
Retrieval No Retrieval 

LST >= 0:  T = True; F = False 
Degraded – Sensor Zenith > 40: out = Outside Range, in = Within Range 
Active Fire:  no = no active fire; fire = active fire 
AOD Range: out = Outside Range, in = Within Range 
Thin Cirrus:  yes = Thin Cirrus, no = No Thin Cirrus 
x = “Indifferent” 
 
Note that AOD is not retrieved under some conditions e.g. nighttime, snow/ice surface, cloud etc. If there 
is no AOD retrieval, the AOD range criteria will be excluded in above matrix. Similarly because thin 
cirrus detection is only available at daytime, it is excluded in above matrix for nighttime pixel LST quality 
determination.  

2.5 Performance Estimates 

For each of the 7 algorithms, we calculated the bias and standard deviation (STD) of the 
regressions. Figure 2-9 shows scatter plots of the regression results for the daytime dry 
atmosphere cases. It indicates that all algorithms perform well for an LST range from about 
220 K to 320 K. The STD of the differences between the prescribed LSTs and the retrieved 
LSTs ranged from 0.33 K (algorithms 1, 2, 3, 5, 6, 7) to 0.55 K (algorithms 4).  It is significantly 
higher under the moist atmosphere cases, where the value ranged from 0.81 K (algorithm 5) 
to 0.86 K (algorithm 4). For algorithms 2 and 7, the STD is further stratified with sensor 
viewing zenith angles. The STD is from 0.35 K to 0.46 K under very dry condition, 0.56 K to 
1.06 K under dry condition and 0.65 K to 1.74 K under moist condition for algorithm 7. 
Algorithm 2 yields similar STD values. The results show a dramatic increase of the regression 
STD under moist and large viewing angle conditions. For the nighttime cases, similar 
regression accuracies are observed. STDs of the algorithms under different atmospheric 
conditions are listed in Table 2-9. 
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Figure 2-9 Scatter plots of the regression results for the dry atmosphere. Standard deviation (STD) 
errors of the regression are given in each plot (Daytime). 

Table 2-9 Standard deviation errors (K) of the regression analysis. 

No Daytime Nighttime 
0-1.5 1.5-3 3-4.5 0-1.5 1.5-3 3-4.5 
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1 0.36 0.63 0.83 0.34 0.61 0.82 
3 0.36 0.62 0.83 0.34 0.61 0.83 
4 0.55 0.67 0.86 0.54 0.66 0.85 
5 0.38 0.64 0.81 0.36 0.63 0.82 
6 0.37 0.63 0.83 0.35 0.61 0.83 

2 

TPW:0-1.5 TPW:0-1.5 
0-25 25-45 45-55 55-65 65-75 0-25 25-45 45-55 55-65 65-75 
0.33 0.35 0.36 0.41 0.44 0.31 0.33 0.36 0.40 0.44 
TPW:1.5-3.0 TPW:1.5-3.0 
0.54 0.58 0.66 0.79 1.09 0.53 0.57 0.64 0.72 0.94 
TPW:3.0-4.5 TPW:3.0-4.5 
0.63 0.72 0.89 1.12 1.74 0.64 0.71 0.84 1.14 1.66 

7 

TPW:0-1.5 TPW:0-1.5 
0.35 0.36 0.38 0.43 0.46 0.32 0.34 0.37 0.42 0.46 
TPW:1.5-3.0 TPW:1.5-3.0 
0.56 0.6 0.67 0.79 1.06 0.56 0.60 0.65 0.75 0.95 
TPW:3.0-4.5 TPW:3.0-4.5 
0.65 0.73 0.87 1.12 1.74 0.67 0.74 0.88 1.06 1.67 

 
To have a closer look at error distributions, we produced histogram plots of the regression 
fits in Figures 2-10 to 2-12 and Figures 2-13 to 2-15 for daytime and nighttime results, 
respectively. Figures 11-16 reveal that there is no significant bias in any of the algorithms, 
and the error distributions are fairly symmetric (Gaussian-distribution-like) around 0.15.   
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Figure 2-10 Histogram plots of the regression results for the dry atmosphere (tpw: 0.0-1.5 at Daytime). 
Standard deviation (STD) and mean errors of the regression are given in each plot. 
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Figure 2-11 Histogram plots of the regression results for the moist atmosphere (Tpw: 1.5-3 at 
Daytime). Standard deviation (STD) and mean errors of the regression are given in each plot. 

 

Figure 2-12 Histogram plots of the regression results for the moist atmosphere (Tpw: 3-4.5 at 
Daytime). Standard deviation (STD) and mean errors of the regression are given in each plot. 
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Figure 2-13 Histogram plots of the regression results for the dry atmosphere (Tpw: 0.0-1.5 at 
Nighttime). Standard deviation (STD) and mean errors of the regression are given in each plot. 
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Figure 2-14 Histogram plots of the regression results for the moist atmosphere (Tpw: 1.5-3.0 at 
Nighttime). Standard deviation (STD) and mean errors of the regression are given in each plot. 
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Figure 2-15 Histogram plots of the regression results for the moist atmosphere (Tpw: 3-4.5 at 
Nighttime). Standard deviation (STD) and mean errors of the regression are given in each plot. 

 
Compared to the daytime algorithm performance, the standard deviation of the nighttime 
case is slightly better for each algorithm. And the algorithm precision gets worse with 
increasing water vapor contents and viewing angles. 
 

2.5.1 Test Data Description 

As described in Section 2.3.2, the profile collection is composed of 126 profiles generated 
from radiosonde data and 354 profiles from TIGR. Following the method described in Figure 
2-9, the comprehensive simulation database is built up for VIIRS sensor onboard S-NPP 
satellite. The database depicts the relationships among land surface temperature, sensor 
brightness temperature, viewing angle, emissivity and tpw etc. This database serves as the 
test base for theoretical estimation of the enterprise LST algorithm performance. The dataset 
used for validation is described in section 2.7.  
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2.5.2 Sensor Effects 

The enterprise LST utilizes brightness temperature from VIIRS bands 15 and16and is 
affected by the sensor performance including but not limited to the stability of the spectral 
response function, the sensor noise ratio and accuracy of the radiometric calibration, 
geolocation error and spectral error.  The effects of sensor noise on LST is described in 
section 2.5.3. Geo-location uncertainties for M-bands are ~ 70 m at nadir, meeting 
specifications at nadir and edge-of-scan (Cao et al., 2013).  

2.5.3 Retrieval Errors 

Theoretically all inputs may introduce uncertainty to the final LST product. In this study, three 
important error sources are considered: sensor noise uncertainty, the surface emissivity 
uncertainty and the atmospheric water vapor absorption.  We therefore analyzed the 
sensitivities of the candidate LST algorithms (Table 2-4) with respect to the three factors. The 
simulation dataset described above is used in the following estimations. In the following 
sections, we only listed the results of the variation and uncertainty estimation for the selected 
enterprise algorithm. 
 
2.5.3.1 Sensor noise Uncertainty 
The LST uncertainty δTs due to the sensor data uncertainty can be described as,   
 

2
2

2
1 TTTs δδδ +=    (3.3) 

 
where δT1  and  δT2 represent the band uncertainties resulting from brightness temperature 
uncertainties at 11 and 12 micron meter, respectively assuming that the two error sources 
are uncorrelated. Using algorithm 7 (Table 2-4) as an example, these two components are  
 

114211 )*( BTCCCT δεδ ++=      and      12422 )*( BTCCT δεδ −−=     (3.4) 
 
Therefore, the LST uncertainty with respect to BT uncertainties is  
 

2
1242

2
11421 ))*(())*(( BTCCBTCCCTs δεδεδ −−+++=      (3.5) 

 
The requirement for noise equivalent ΔT (NEdT) is 0.070 and 0.072 for the two split window 
bands at 11µm and 12 µm, therefore δBT11 is set as 0.070 and δBT12 is set as 0.072 in this 
study. 
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Figure 2-16 LST uncertainty attributed to the sensor noise at three TPW categories under day (left) 
and night (right) conditions for algorithm 7 assuming the mean emissivity of 0.97, emissivity difference of 

0.005 at difference viewing geometries 
 
The results indicate that the sensor noise of 0.007 and 0.072 for BT11 and BT12 can cause 
LST uncertainty of 0.27 K and 0.25 K for daytime and nighttime, respectively. And the 
uncertainty increases with water vapor and sensor viewing angle as shown in Figure 2-16.  
2.5.3.2 Emissivity Uncertainty 
Analytically, the LST uncertainty δTs due to the emissivity uncertainty can be described as,   
 

2
2

2
1 TTTs δδδ +=  (3.6) 

 
where δT1  and  δT2  represent uncertainties resulting from the uncertainties of the mean 
emissivity (Ɛ) and emissivity difference (ΔƐ), respectively. Using algorithm 7 (Table 2-4) as 
an example, these two components are  
 

δεδ ))(*( 1211431 TTCCT −+=      and      )(52 εδδ ∆=CT  (3.7) 
 

Therefore, the maximum LST uncertainty for algorithm 7 is  
 

2
5

2
121143 ))(()))(*(( εδδεδ ∆+−+= CTTCCTs        (3.8) 

 
Considering that Ɛ=(Ɛ11+Ɛ12)/2 and ΔƐ=( Ɛ 11- Ɛ 12), and assuming the emissivity 
uncertainties in each band are the same, i.e., ΔƐ= ΔƐ 11= ΔƐ 12, the maximum uncertainty of 



NOAA/NESDIS/OSPO  
   Algorithm Theoretical Basis Document 

Version 1.2 
Date 10/28/2020 

TITLE:  Enterprise LST Algorithm Theoretical Basis Document 
  Page 42 of 69 

 
 

 

the emissivity difference is δ(ΔƐ)=| δ Ɛ11|+ |δ Ɛ 12|=2δƐ. Thus, the LST uncertainty, δTs, due 
to the emissivity uncertainty can be calculated using the above equation. 
 

 

Figure 2-17 Uncertainty of the retrieved LSTs along with the surface emissivity uncertainty for 
algorithm 7 under day (left) and night (right) conditions, respectively. In the plots, it is assumed that 

emissivity difference is 0.005. 
 
Algorithm sensitivity to emissivity was estimated using equation (3.8) and the results are 
presented in Figure 2-17. For illustration purpose, we assumed that the mean emissivity (Ɛ) 
and emissivity difference (ΔƐ) are 0.98 and 0.005, respectively. Results show that the LST 
uncertainty (δT) increases approximately linearly with emissivity error and can be as high as 
3 K when emissivity data has a fairly large uncertainty under very wet conditions. Note that 
the LST uncertainties generally increase with the total amount of precipitation water vapor 
but the sensitivity varies over algorithms. The algorithm 1, 2, 4, 6 and 7 is more sensitive 
than algorithm 3 and 5, which is because the emissivity difference (ΔƐ) is not used in the 
formulas of the algorithm 3 and 5.   
 
Similar sensitivity results were observed for the nighttime cases. Note, however, that the 
predicted LST uncertainty calculated using equation (3.6) represents an extreme situation 
where all of the emissivity errors worsen the LST retrieval (i.e., the errors always compound 
rather than cancel each other). In practice, the final LST error may be significantly smaller, 
since emissivity errors at each channel may counteract each other. 
2.5.3.3 Water Vapor Uncertainty 
Stratifying our regressions by water vapor regime, we assume that water vapor content can 
be well estimated a priori.  In practice, water vapor information is usually available from 
satellite soundings, ground radiosondes and/or operational numerical weather prediction 
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model forecasts. Two errors may occur. First, the water vapor value may be mis-measured 
due to a variety of error sources. Second, due to spatial resolution differences between VIIRS 
data and water vapor data, the TPW in a finer pixel size (e.g. 1 km) might not be well 
represented by the integrated water vapor measurements over a large area(e.g. 0.25 degree 
grid).  Therefore, the coefficient set of the LST algorithm for dry atmospheres may be 
incorrectly applied to a moist atmospheric condition, and vice-verse. To test the sensitivity of 
the algorithms to this error, we assume that the TPW error has a normal distribution with a 
mean value of 0.0. The probability density of the normal distribution can be expressed as: 

2

22
)(

2

2
1  ),( σ

µ

πσ
σµ

−
−

=
x

exf       (3.9) 

Where: 

µ  is the mean of the distribution  
σ  is the standard deviation  
Assume that the standard deviation of the tpw error (σ ) is [0.25, 0.50, 0.75, 1.00, 1.25, 
1.50]. The possibility of TPW falling in incorrect water vapor range is calculated and so is its 
contribution to LST retrieval error. 
 

 

Figure 2-18 LST uncertainty caused by TPW uncertainty with probability calculated for retrievals using 
coefficients derived for different dry/moist atmosphere. It summarized the uncertainty for day/night and 

whole day condition. 
 
The water vapor sensitivity of the algorithms is illustrated for daytime, nighttime and all day 
cases respectively in Figure 2-18.  In these cases, for all algorithms, the LST uncertainty 
increases with the TPW uncertainty but the sensitivity varies over algorithms. Algorithm 1, 3, 

https://en.wikipedia.org/wiki/Probability_density
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Standard_deviation
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and 6 are less sensitive compared to algorithms 2, 4 and 7. The LST uncertainty is from 
about 0.6 to 0.9K at nighttime, from 0.6 to 0.95K for daytime.   
2.5.3.4 Impact of Large Satellite View Angle 
In addition, the sensor view geometry may have significant impact on the variation of 
atmospheric absorption due to the radiative transfer path length increase from nadir to the 
edge of the scan. VIIRS has a wide swath of ~3060 km and the sensor zenith angle can 
reach 72 degree. Such a large view zenith angle may have great impact on LST retrieval. 
We therefore assessed candidate algorithm sensitivity to the varying zenith angles using the 
simulation datasets. 
 

 

Figure 2-19 Algorithm standard deviation errors in different satellite view zenith angles for daytime (let) 
and nighttime (right), respectively. 

 
The algorithm error distributions with satellite zenith angle are shown for the daytime case 
and nighttime case in Figure 2-19.  It indicates that, for the moist atmospheric conditions, the 
STD error gets worse when the zenith angle is larger than 45 degrees. Similar trends were 
observed for the nighttime case. For dry atmospheric conditions, the increase in STD is 
insignificant.  
 
Overall, similar water vapor sensitivity was found in all the algorithms, while algorithms 2 and 
7 had significant smaller emissivity sensitivity than the other algorithms. Because simplicity 
is an advantage in operational procedures, algorithm 7 was chosen as the best candidate for 
further evaluation. 
 
We note that all algorithms listed in Table 2-4 give similar retrieval accuracy. This primarily 
indicates the accuracy limitation of the current SW technique. The sensor noise at specified 
level may introduce about 0.25 K LST uncertainties.  The largest errors are expected when 
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the atmosphere is moist and the satellite zenith angle is larger than 40 degrees. Accuracy of 
the retrieval under dry atmospheric conditions is significantly better than that under moist 
atmospheric conditions. Similar results were observed by Yu et al. (2008). 
Emissivity sensitivity is also a serious problem. This is because the emissivity effect is 
coupled with the atmospheric absorption effect in the radiative transfer process; while the 
atmospheric absorption effect is linearized in the SW technique, the emissivity effect cannot 
be similarly linearized.  
 
Finally, we emphasize that all the results discussed to this point assume perfect cloud 
detection. That is, all these results are for truly cloud clear pixels. Residual cloud effects in 
pixels detected as clear will introduce significant uncertainty to the LST retrievals. 

2.6 Practical Considerations 

2.6.1 Numerical Computation Considerations 

The LST algorithm selected is mathematically simple and requires no complicated 
mathematical routines. In operations it will be robust and fast enough in terms of the algorithm 
latency requirement (< 15 minutes, goal) using current computer power. For storage 
consideration, LST values should be scaled in two-byte integers, with scale factors and offset 
defined in the attributes. Quality flags for each pixel value should be bit-flag definitions, to 
minimize data storage.  

2.6.2 Programming and Procedural Considerations 

Because of the algorithm simplicity, the LST algorithm requires small amount of code, with 
basic mathematical routines. However, since the LST algorithm requires ancillary datasets 
such as emissivity data and the total column water data, mapping of the ancillary datasets to 
the satellite pixel geolocation is necessary.   
 
Because the retrieval is stratified by different atmospheric conditions (day/night, dry/moist) 
and viewing geometry, spatial discontinuity of the derived LST field is a concern. Although 
such discontinuity is not observed obviously in the proxy data tests, further verification should 
be performed to ensure it is not a real problem.    
 
The primary adjustable parameters for the LST retrieval are the algorithm coefficients that 
are stratified for four atmospheric conditions. Threshold values for the dry, moist and very 
moist atmospheric conditions are adjustable in order to optimize the algorithm if needed. 
Source of ancillary datasets should be configurable for the best dataset. And finally, it should 
be kept in mind that metadata used for the product may be modified, reduced and added in 
late phase of the product generation.   
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The LST retrieval will be assessed and monitored. First, a set of quality control flags will be 
generated with the LST product for retrieval diagnostics, as is presented in Section 3.4. The 
quality control flags will indicate the retrieval conditions, including the land/non-land surfaces 
(i.e., land, snow, ice, inland water etc.), atmospheric water vapor status (i.e., dry, moist and 
very moist conditions), day and night, large view angle etc.  LST maps and statistical 
information will be generated and reviewed for quality assessment. 

2.6.3 Exception Handling 

When LST cannot be retrieved due to conditions such as missing or bad SDR data, cloud-
contaminated pixel, or sea-water pixel as indicated from the land sea mask, LST pixel values 
are set to fill. Availability of other ancillary datasets such as emissivity and water vapor will 
also be checked and the retrieval will be skipped if either is not available. In addition to this, 
code is added to check the valid ranges of the input e.g. brightness temperature of band 15 
and 16, emissivity etc. into the LST EDR. The valid ranges of these inputs are included into 
a separate file which is configurable and can be changed without having to recompile.  

2.7 Validation 

The selected algorithm (7) is verified through validation with in-situ observations and cross 
satellite comparisons using satellite data from multiple sensors with TIR split window 
channels, including VIIRS, the Spinning Enhanced Visible and Infra-red Imager (SEVIRI) 
onboard the European Meteosat Second Generation (MSG) satellite, the Moderate 
Resolution Imaging Spectroradiometer (MODIS) on Aqua satellite, and Advanced Himawari 
Imager (AHI) onboard Himawari 8 satellite. Algorithm coefficients for different sensor inputs 
are different due to their different central wavelengths and spectral response functions. The 
same simulation dataset and regression procedure are used, as described in Section 2.3.2, 
to generate the algorithm coefficients for each sensor, with its corresponding spectral 
characteristics. Algorithm 7, in this section, will be referred to as “the algorithm”.  

2.7.1 Evaluation using ground observations 
Considering the global representativeness and satellite spatial coverage, we collected the 
ground observations from SURFRAD, BSRN, and GMD for evaluations of the enterprise 
VIIRS LST; the data from Karlsruhe Institute of Technology (KIT) in Africa for evaluations of 
the SEVIRI LST generated using the enterprise LST algorithm, which will be referred to as 
“the enterprise SEVIRI LST”; the data from Australian and New Zealand Flux Research and 
Monitoring (OZFLux) for evaluations of the AHI LST generated using the enterprise 
algorithm, which will be referred to as “the enterprise AHI LST” in later chapters.  
2.7.1.1 Ground data measurements 
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2.7.1.1.1 SURFRAD Data 
The SURFRAD network has been operational in the United States since 1995. It provides 
high quality in situ measurements of upwelling and downwelling radiation, along with other 
meteorological parameters such as the atmospheric water vapor. A detailed description of 
the SURFRAD network and associated instrumentation can be found in Augustine et al. 
(2000; 2005).  Three years (08/2012 to 07/2015) of data from seven SURFRAD stations 
(Table 2-10) are used.  

Table 2-10 A brief introduction of the six SURFRAD stations whose data are used for the algorithm 
evaluation. 

Site No. Site Location Lat(N)/Lon(W) Surface Type(IGBP) 

1 Pennsylvania State 
University, PA 40.72/77.93 Crop Land 

2 Bondville, IL 40.05/88.37 Crop Land 

3 Goodwin Creek, MS 34.25/89.87 Grass Land 

4 Fort Peck, MT 48.31/105.10 Grass Land 

5 Boulder, CO 40.13/105.24 Crop Land 

6 Desert Rock, NV 36.63/116.02 Open Shrub Land 

7               Sioux Falls, SD                            43.73/96.62   Crop Land 

 
The SURFRAD ground LST values were calculated from upwelling and downwelling radiation 
measurements, in the spectral range from 3 µm to 50 µm, obtained by a precise infrared 
radiometer (PIR). The SURFRAD PIR is calibrated annually using a laboratory blackbody so 
that its measurement estimates the total energy emitted from a blackbody rather than the 
instrument limited spectrum (Augustine et al., 2000; 2005).  
2.7.1.1.2 BSRN data 
The radiometric network BSRN was launched in 1992 by World Climate Research 
Programme (WCRP) to support the research projects of the WCRP and other scientific 
programs. BSRN provides typically 1-minute averaged short- and long-wave surface 
radiation fluxes. As of mid-2013, the data import is organized in so-called station-to-archive 
files, which contain all the data from one station collected during one month. Currently a total 
of over 7000 station-month datasets from 58 stations (Figure 2-20) are available in the 
World Radiation Monitoring Center (WRMC). Two sites, CAB site located in Cabauw, the 
Netherlands, and GOB site located in Gobabeb, Namibia, are selected based on the following 
criteria: availability of both upwelling and downwelling long wave radiation observations, 
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temporal overlap with VIIRS measurements, and site thermal homogeneity (especially if a 
site is close to water body). 

 

Figure 2-20 BSRN site maps 
 

2.7.1.1.3 GMD data 
GMD baseline observatories include 6 sites (Figure 2-21). Due to similar reasons explained 
in section for BSRN, only one site, Summit site in Greenland, is selected for LST validation. 
GMD also provides typically 1-minute averaged short- and long-wave surface radiation 
fluxes, in which the long wave radiation is used for ground LST calculation. 
 

Source: http://bsrn.awi.de/fileadmin/user_upload/redakteur/Maps/BSRN-Station-Global.pdf 
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Figure 2-21 GMD site maps (http://www.esrl.noaa.gov/gmd/) 
 

2.7.1.1.4 KIT data 
Supported by the Land Surface Analysis - Satellite Applications Facility (LSA-SAF), KIT of 
Germany operates four permanent validation stations for evaluation of LST retrieved from 
TIR satellite measurements (Göttsche and Olesen, 2009; Olesen and Göttsche, 2009). In 
this study we used one month data in March 2012 over two sites: one is in Gobabeb, and the 
other one is in Heimat, Namibia (Figure 2-22a). Two down-looking Heitronics KT-15.85 IIP 
radiometers measure the surface-leaving radiance (9.6-11.5µm) from the gravel plain with 
the fields of view (FOV) about 13 m2 each. A third radiometer (Kipp & Zonen CNR1) at the 2 
m level measures sky radiance, in terms of broad-band shortwave (SW) and longwave (LW) 
radiative fluxes (Figure 2-22b). Brightness temperatures from the surface pointing 
radiometers are converted to radiances, which are then corrected for reflected downwelling 
radiance using the monthly mean surface emissivity extracted from the CIMSS baseline fit 
emissivity database for 11 µm and measured downwelling radiance. LST is then obtained 
from the corrected surface leaving radiances. 

http://www.esrl.noaa.gov/gmd/


NOAA/NESDIS/OSPO  
   Algorithm Theoretical Basis Document 

Version 1.2 
Date 10/28/2020 

TITLE:  Enterprise LST Algorithm Theoretical Basis Document 
  Page 50 of 69 

 
 

 

 

Figure 2-22 (a) is Geographic landscape in Gobabeb station in Namibia and (b) is the instrumentation 
for LST measurement: two radiometers measure the surface-leaving radiance (9.6–11.5 μm) from the 

gravel plain, which is highly homogenous over at least 2500 km2. 
 

2.7.1.1.5 OzFlux data 

OzFlux is a network of micrometeorological flux stations located at various sites within 
Australia and New Zealand (Figure 2-23). OzFlux is part of an international network (FluxNet) 
of over 500 flux stations that is designed to provide continuous, long-term 
micrometeorological measurements to monitor the state of ecosystems globally. 
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Figure 2-23 OzFlux monitoring site map and table (http://www.ozflux.org.au/monitoringsites/index.html) 

OzFlux provides Meteorological data such as air temperature, humidity, wind speed and 
direction, and precipitation; radiation data such as incoming and outgoing shortwave and 
longwave, net radiation, and direct and diffuse shortwave; soil data such as soil heat flux, 
soil temperature and soil moisture etc. Same as SURFRAD, the long wave upwelling and 
downwelling measurements are used for ground LST calculation.  In this study, two sites in 
Alice Springs Mulga (ASM) and in Ti Tree East (TTE) are selected for LST validation given 
that these two sites are relatively homogeneous in thermal flux.   
2.7.1.2 Ground LST data calculation and matchup procedure 
The data from SURFRAD, BSRN, GMD as well as OzFlux provides the long-wave 
downwelling and upwelling radiative fluxes. The in situ surface skin temperature, Ts, can be 
estimated using the following equation 
 

4/1)/))1((( σεε ↓−−↑= RRsT           (4.1) 
Where ↑R  and ↓R are upwelling and downwelling long wave fluxes respectively, ε is the 
surface broadband emissivity, and σ is Stefan-Boltzmann constant, i.e., 5.67051 × 10−8 
W·m−2·K−4. Instead of using the fixed emissivity value for each site, the monthly emissivity is 
used to better characterize the emissivity change over sites. Both ground data and satellite 
data are quality controlled using the procedure described in Liu et al. (2015).  
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Two procedures are used for ground data quality control: the first applies the quality flag (QF) 
included in the original data, e.g., a QF of zero indicates that the corresponding data point is 
good, having passed all QC checks; the other is the temporal variation test by checking the 
Standard Deviation (STD) of downwelling sky irradiance in the 30 minutes temporal interval 
centered at the observation time. A STD threshold value of 1.5 is used to remove the potential 
cloud contamination and signal noise and allow reasonable temporal variability. 
   
To reduce cloud contamination and suboptimal atmospheric conditions, only the satellite data 
with confidently clear QF for cloud condition is used. In addition, the spatial variation test, 
i.e., the STD of the neighboring 3 by 3 pixel brightness temperature of the channel at 11 µm 
centered at the matchup pixel, is applied as an additional cloud filter. The STD should be 
small over thermal homogeneous surfaces unless there is cirrus or cloud cover. The spatial 
variation test is widely used in LST validation studies. For example, Li et al. [2014] used the 
neighboring 5 × 5 box for MODIS LST validation. In this study, the threshold is set as 1.5 K, 
although it may be slightly higher (e.g., 1.75 K) for sites like Boulder [Yu et al., 2009b]. We 
intend to include all angle measurements in the validation and therefore the LST data quality 
flag is not applied as it includes the viewing zenith angle restriction.  
 
For temperature-based (T-based) validation, the satellite LST and its in-situ counterpart data 
pair with smallest distance in both time and space is selected. For cross-sensor comparison, 
the temporal difference is controlled within 10 minutes. 
2.7.1.3 Ground validation results 
2.7.1.3.1 Match-up VIIRS LST and Station Observation Data 
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Figure 2-24 Enterprise VIIRS LST against ground data from (a) SURFRAD, (b) GMD, and (c) BSRN. 
 
The match-up of the enterprise VIIRS LST and ground observations was carried out on all 
cloud free pixels. The result for SURFRAD includes 7 sites with the biggest sample size 
(Figure 2-24a), followed by that for BRSN (Figure 2-24b) with two sites, and GMD (Figure 2-
24c) with only one site. A better agreement is found at nighttime than at daytime, with the 
exception of the GMD result, due to a higher possibility of cloud contamination over snow/ice 
surface at nighttime even with the comprehensive cloud screening procedure.   

08/2012-07/2015 09/2013-06/2015 

   09/2013-07/2015 

   (a) (b) 

(c) 
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2.7.1.3.2 Match-up SEVIRI LST and ground measurements from KIT 

 

Figure 2-25 SEVIRI LST against ground data from KIT over Gobabeb site (right) and Heimat site (left) 
for March, 2012. 

 
The relative large cold bias between the ground and the satellite data has been noted as 
shown in Figure 2-25. The cause of the bias is unknown yet.   Further investigations will be 
conducted during the period of intensive algorithm evaluations. 
2.7.1.3.3 Match-up AHI LST and ground measurements from OzFlux  
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Figure 2-26 AHI LST against ground data from OzFlux over TTE ASM site (left) and site (right) from 
January to September, 2015 

 
The much better agreement between the ground and the satellite data at nighttime compared 
to that at daytime has been found though the LST underestimation is observed at TTE site 
(Figure 2-26).  

2.7.2 Cross satellite evaluations 
2.7.2.1 Enterprise VIIRS LST and SEVIRI LST 
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Figure 2-27 Enterprise VIIRS LST versus enterprise SEVIRI LST over two scenes on Feb. 19 UTC 
02:00 (nighttime) and UTC 13:25 (daytime) over Iberian Peninsula area. The cross comparison results 

are shown in the scatter plot. 
 
A slightly better agreement is found at nighttime compared to that at daytime (Figure 2-27). 
The enterprise SEVIRI LST is found on average 1.5 K warmer than the enterprise VIIRS LST, 
similar to their brightness temperature difference at around 11µm. It is worth mentioning that 
all finer resolution VIIRS LSTs falling in the same coarser resolution SEVIRI pixel are 
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averaged to match the LST from the latter. Therefore, the mapping uncertainty as well as the 
sub pixel cloud will potentially affect the comparison results.  
2.7.2.2 Enterprise VIIRS LST and AQUA LST 
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Figure 2-28 Enterprise VIIRS LST versus enterprise MODIS AQUA LST over two scenes on Jan. 3 
2016 at UTC 19:50(daytime) over US and Feb. 10, 2016 a¬¬t UTC 01:40 (nighttime) over. The cross 

comparison results are shown in the scatter plot. 
 
For the cross comparison between two sensors with similar footprints, the closest neighbor 
is used to select the comparable pixel. Besides the difference in the sensor data, the viewing 
geometry as well as the cloud mask accuracy will affect the comparison results. The result 
in Figure 2-28 indicates an overall close agreement between the enterprise VIIRS LST and 
MODIS LST estimation. But some noises are observed for the daytime case, which might be 
due to the cloud contamination.  
2.7.2.3 Enterprise VIIRS LST and AHI LST 
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Figure 2-29 Enterprise VIIRS LST versus enterprise AHI LST over two scenes on Feb. 11, 2016 at 
UTC 05:30(daytime) and Feb. 5, 2016 at UTC 17:00 (nighttime). The cross comparison results are 

shown in the scatter plot. 
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The same matchup method used in the cross comparison between VIIRS and SEVIRI LSTs 
is applied. For the two scenes cases, the nighttime comparison shows a much better 
agreement compared to the daytime case (Figure 2-29). The bias is found consistent with 
the sensor data difference between VIIRS and AHI. The noisy matchups particularly those 
with over 10 K difference is likely caused by the cloud contamination effect.  

2.7.3 Error Budget Summary 
In summary, we provided a quantitative assessment of the enterprise algorithm with a variety 
of test datasets, including the enterprise VIIRS LST, SEVIRI LST, AQUA  MODIS LST as 
well as AHI LST. The assessment results indicate that the selected enterprise LST algorithm 
can be used for multiple sensors. And the evaluation results demonstrate it can meet both 
the accuracy (1.4 K) and precision (2.5 K) requirements.  
 
A variety of sources may introduce errors in the satellite LST retrieval, yet it is very hard to 
quantitatively identify each one, as most of the error sources are coupled to each other.  In 
our algorithm development, we tried to reduce the LST retrieval error by stratifying the 
algorithm coefficients with different atmospheric moisture conditions, and with different view 
zenith angle ranges and applying emissivity explicitly in the retrieval formula. The test and 
evaluation results indicate that the algorithm can meet the accuracy and precision 
requirements.   
 
However, it must be pointed out that several issues remain unsolved in the algorithm and in 
the test and evaluation process. First, the algorithm is still sensitive to the surface emissivity 
uncertainty. A 0.015 emissivity uncertainty may introduce about 1 K (Figure 2-17) LST 
retrieval error when the atmosphere is relatively moist.  Second, the residual of the 
atmospheric correction can be up to 0.9 K (Table 2-18), and additional errors may be 
introduced if the water vapor information is not right (Figures 2-18). Errors will also be 
introduced in the algorithm coefficient generation due to uncertainties from the MODTRAN 
radiative transfer model. 
  
In the algorithm evaluation process, as mentioned earlier, there are several issues that 
should be further studied in the match-up dataset comparisons. Difference between the 
satellite pixel-size measurement and the ground spot-size measurement must be 
characterized for a high quality validation procedure.   
 
Cloud contamination remains a problem even with stringent cloud filtering procedures. The 
problem is particularly significant over nighttime snow surface according to the validation 
practices conducted over Summit site in Greenland. Note that due to the unavailability of the 
ECM, above ground validation and cross satellite comparison are based on the IDPS VIIRS 
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cloud mask. It has been observed that the enterprise cloud mask and IDPS cloud mask are 
quite different, which may affect the validation results.  
 
3 ASSUMPTIONS AND LIMITATIONS  

3.1 Performance Assumptions 

The following assumptions have been made in developing and estimating the performance 
of the LST retrieval algorithm and products, including proposed mitigation strategies in 
parentheses. 
 

• The ECM is available at the time of LST retrieval (Use alternative built-in algorithm 
to identify cloudy pixels) 

• High quality dynamic land surface emissivity dataset is available  
• The NCEP analysis and forecast water vapor are available 
• SDR data is calibrated and navigated, and are not distorted (set quality flag to bad 

pixels and no LST retrieval is performed). 
 

The LST retrieval algorithm is applicable only on cloudless pixels. The impact on LST due to 
roughness and/or structure of land surface, the emissivity directional feature and its variation 
in a pixel are not handled in the algorithm. The retrieved LST value is an effective land surface 
skin temperature over isothermal mixed pixel. The retrieval accuracy may be degraded 
significantly in regions with heavy atmospheric water vapor loading (e.g. > 5.0 g/cm2) and 
large viewing angles. Also, the retrieval may be questionable in regions with very low LST 
and where the surface air temperature is 15 K higher or lower than LST.  
 
From VIIRS SDR long term monitoring and validation results, VIIRS on orbit performance is 
well characterized and meets specifications; noise is small and stable; accuracy is well 
characterized for thermal emissive bands; geolocation uncertainties for M-bands are ~70m 
at nadir meeting specifications are nadir and edge of scan[Cao et al., 2013].  The 
performance of JPSS 1 is expected to be as good as SNPP. The algorithm coefficient might 
be calibrated or tuned using the real spectral response function. 

3.2 Potential Improvements 

We recently included the SEEBOR profiles into our simulation database. The Seebor V5.0 
consists of 15704 global profiles of temperature, moisture, and ozone at 101 pressure levels 
for clear sky conditions in which there are 9136 profiles over land. The profiles are taken from 
NOAA-88, an ECMWF 60L training set, TIGR-3, ozonesondes from 8 NOAA Climate 
Monitoring and Diagnostics Laboratory (CMDL) sites and radiosondes from 2004 in the 
Sahara desert. (Borbas et al., 2005).  The Seebor profiles over land represents a variety of 
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atmospheric conditions, spanning a column water vapor range from 0.2 to 7.5 g/cm2 , a 
surface air temperature range from 200 K to 319 K and the LST range from 204 K to 337 K. 
It provides an opportunity for very low and very high temperature derivation. The 
improvement will involve the refinement of the enterprise LST LUT based on the SEEBOR 
simulation database. The LST performance enhancements over very low and very high 
temperature is expected. In addition, the advances in emissivity estimation will further 
improve the LST accuracy.  
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